3.20 \(\int \frac {1}{(a+b e^{c+d x})^3} \, dx\)

Optimal. Leaf size=69 \[ -\frac {\log \left (a+b e^{c+d x}\right )}{a^3 d}+\frac {x}{a^3}+\frac {1}{a^2 d \left (a+b e^{c+d x}\right )}+\frac {1}{2 a d \left (a+b e^{c+d x}\right )^2} \]

[Out]

1/2/a/d/(a+b*exp(d*x+c))^2+1/a^2/d/(a+b*exp(d*x+c))+x/a^3-ln(a+b*exp(d*x+c))/a^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {2282, 44} \[ \frac {1}{a^2 d \left (a+b e^{c+d x}\right )}-\frac {\log \left (a+b e^{c+d x}\right )}{a^3 d}+\frac {x}{a^3}+\frac {1}{2 a d \left (a+b e^{c+d x}\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*E^(c + d*x))^(-3),x]

[Out]

1/(2*a*d*(a + b*E^(c + d*x))^2) + 1/(a^2*d*(a + b*E^(c + d*x))) + x/a^3 - Log[a + b*E^(c + d*x)]/(a^3*d)

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b e^{c+d x}\right )^3} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{x (a+b x)^3} \, dx,x,e^{c+d x}\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {1}{a^3 x}-\frac {b}{a (a+b x)^3}-\frac {b}{a^2 (a+b x)^2}-\frac {b}{a^3 (a+b x)}\right ) \, dx,x,e^{c+d x}\right )}{d}\\ &=\frac {1}{2 a d \left (a+b e^{c+d x}\right )^2}+\frac {1}{a^2 d \left (a+b e^{c+d x}\right )}+\frac {x}{a^3}-\frac {\log \left (a+b e^{c+d x}\right )}{a^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 62, normalized size = 0.90 \[ \frac {\frac {a^2}{\left (a+b e^{c+d x}\right )^2}+\frac {2 a}{a+b e^{c+d x}}-2 \log \left (a+b e^{c+d x}\right )+2 d x}{2 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*E^(c + d*x))^(-3),x]

[Out]

(a^2/(a + b*E^(c + d*x))^2 + (2*a)/(a + b*E^(c + d*x)) + 2*d*x - 2*Log[a + b*E^(c + d*x)])/(2*a^3*d)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 127, normalized size = 1.84 \[ \frac {2 \, b^{2} d x e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a^{2} d x + 3 \, a^{2} + 2 \, {\left (2 \, a b d x + a b\right )} e^{\left (d x + c\right )} - 2 \, {\left (b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a b e^{\left (d x + c\right )} + a^{2}\right )} \log \left (b e^{\left (d x + c\right )} + a\right )}{2 \, {\left (a^{3} b^{2} d e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a^{4} b d e^{\left (d x + c\right )} + a^{5} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(2*b^2*d*x*e^(2*d*x + 2*c) + 2*a^2*d*x + 3*a^2 + 2*(2*a*b*d*x + a*b)*e^(d*x + c) - 2*(b^2*e^(2*d*x + 2*c)
+ 2*a*b*e^(d*x + c) + a^2)*log(b*e^(d*x + c) + a))/(a^3*b^2*d*e^(2*d*x + 2*c) + 2*a^4*b*d*e^(d*x + c) + a^5*d)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 65, normalized size = 0.94 \[ \frac {\frac {2 \, {\left (d x + c\right )}}{a^{3}} - \frac {2 \, \log \left ({\left | b e^{\left (d x + c\right )} + a \right |}\right )}{a^{3}} + \frac {2 \, a b e^{\left (d x + c\right )} + 3 \, a^{2}}{{\left (b e^{\left (d x + c\right )} + a\right )}^{2} a^{3}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(d*x+c))^3,x, algorithm="giac")

[Out]

1/2*(2*(d*x + c)/a^3 - 2*log(abs(b*e^(d*x + c) + a))/a^3 + (2*a*b*e^(d*x + c) + 3*a^2)/((b*e^(d*x + c) + a)^2*
a^3))/d

________________________________________________________________________________________

maple [A]  time = 0.01, size = 74, normalized size = 1.07 \[ \frac {1}{2 \left (b \,{\mathrm e}^{d x +c}+a \right )^{2} a d}+\frac {1}{\left (b \,{\mathrm e}^{d x +c}+a \right ) a^{2} d}-\frac {\ln \left (b \,{\mathrm e}^{d x +c}+a \right )}{a^{3} d}+\frac {\ln \left ({\mathrm e}^{d x +c}\right )}{a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*exp(d*x+c)+a)^3,x)

[Out]

1/d/a^3*ln(exp(d*x+c))-ln(b*exp(d*x+c)+a)/a^3/d+1/a^2/d/(b*exp(d*x+c)+a)+1/2/a/d/(b*exp(d*x+c)+a)^2

________________________________________________________________________________________

maxima [A]  time = 0.91, size = 84, normalized size = 1.22 \[ \frac {2 \, b e^{\left (d x + c\right )} + 3 \, a}{2 \, {\left (a^{2} b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a^{3} b e^{\left (d x + c\right )} + a^{4}\right )} d} + \frac {d x + c}{a^{3} d} - \frac {\log \left (b e^{\left (d x + c\right )} + a\right )}{a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*(2*b*e^(d*x + c) + 3*a)/((a^2*b^2*e^(2*d*x + 2*c) + 2*a^3*b*e^(d*x + c) + a^4)*d) + (d*x + c)/(a^3*d) - lo
g(b*e^(d*x + c) + a)/(a^3*d)

________________________________________________________________________________________

mupad [B]  time = 3.74, size = 121, normalized size = 1.75 \[ \frac {\frac {x}{a}+\frac {b^2\,x\,{\mathrm {e}}^{2\,c+2\,d\,x}}{a^3}+\frac {2\,b\,x\,{\mathrm {e}}^{c+d\,x}}{a^2}-\frac {3\,b^2\,{\mathrm {e}}^{2\,c+2\,d\,x}}{2\,a^3\,d}-\frac {2\,b\,{\mathrm {e}}^{c+d\,x}}{a^2\,d}}{a^2+2\,{\mathrm {e}}^{c+d\,x}\,a\,b+{\mathrm {e}}^{2\,c+2\,d\,x}\,b^2}-\frac {\ln \left (a+b\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\right )}{a^3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*exp(c + d*x))^3,x)

[Out]

(x/a + (b^2*x*exp(2*c + 2*d*x))/a^3 + (2*b*x*exp(c + d*x))/a^2 - (3*b^2*exp(2*c + 2*d*x))/(2*a^3*d) - (2*b*exp
(c + d*x))/(a^2*d))/(a^2 + b^2*exp(2*c + 2*d*x) + 2*a*b*exp(c + d*x)) - log(a + b*exp(d*x)*exp(c))/(a^3*d)

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 76, normalized size = 1.10 \[ \frac {3 a + 2 b e^{c + d x}}{2 a^{4} d + 4 a^{3} b d e^{c + d x} + 2 a^{2} b^{2} d e^{2 c + 2 d x}} + \frac {x}{a^{3}} - \frac {\log {\left (\frac {a}{b} + e^{c + d x} \right )}}{a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(d*x+c))**3,x)

[Out]

(3*a + 2*b*exp(c + d*x))/(2*a**4*d + 4*a**3*b*d*exp(c + d*x) + 2*a**2*b**2*d*exp(2*c + 2*d*x)) + x/a**3 - log(
a/b + exp(c + d*x))/(a**3*d)

________________________________________________________________________________________